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Abstract— This paper presents and compares two iterative
coded modulation techniques for deep-space optical communi-
cations using pulse-position modulation (PPM). The first code,
denoted by SCPPM, consists of the serial concatenation of an
outer convolutional code, an interleaver, a bit accumulator, and
PPM. The second code, denoted by LDPC-PPM, consists of the
serial concatenation of an LDPC code and PPM. We employ
Extrinsic Information Transfer (EXIT) charts for their analysis
and design. Under conditions typical of a communications link
from Mars to Earth, SCPPM is 1 dB away from capacity,
while LDPC-PPM is 1.4 dB away from capacity, at a Bit Error
Rate (BER) of approximately 10~ °. However, LDPC-PPM lends
itself naturally to low latency parallel processing in contrast to
SCPPM.

I. INTRODUCTION

A deep-space communications link must have a transmitter
that is both power efficient and low weight. Optical links
satisfy these requirements, and also can use large bandwidths,
making them a viable candidate to replace or supplement
current deep-space radio-frequency links. In this paper, we
present efficient error-control-coding schemes for a deep-space
optical link, where peak and average power constraints dictate
a small duty cycle. These codes were developed to address the
needs of a communications link from Mars to Earth, designed
to transmit at mega-bit per second rates.

A direct-detection optical link may be modeled as a Poisson
point process, with system constraints imposing peak power,
average power, and bandwidth limitations. Wyner [1] showed
that under peak and average power constraints, negligible
capacity loss is incurred when restricting the modulation to
a binary, slotted scheme. Shamai [2] extended this result to
include a bandwidth constraint, illustrating regions where a
binary, slotted scheme is near-optimal. For peak power, aver-
age power, and bandwidth constraints typical of a deep-space
link, restricting the modulation to pulse-position-modulation
(PPM) is near-capacity achieving [3]. A number of authors
noted the efficiency of PPM for an optical channel prior to
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these results, e.g., [4].

Hence, we may, with negligible loss relative to alternatives,
fix the modulation to be PPM, and address the choice of
a suitable Error Control Code (ECC). A number of authors
have addressed the design of ECC’s for the Poisson PPM
channel. In an earlier work [5], a Reed-Solomon (RS) code
was proposed for error protection on this channel. A noise-
less (meaning no background photons) Poisson PPM channel
reduces to a symbol erasure channel, and an (n, k) RS code
may be tailored to fit an M-ary PPM channel by choosing
n = M — 1 and taking code symbols from the Galois field
with M elements.

However, the deep-space optical channel is seldom noise-
less. Moreover, a block length of n = M — 1 is, for cases
of practical interest, too small to achieve good performance.
Longer block lengths may be obtained with RS codes defined
in higher-order fields, in which multiple PPM symbols are
associated with each code symbol, but this results in only
marginal improvement [6]. RS performance on a noisy Poisson
channel typically remains 3 dB or more away from capacity
when conventional hard-decision decoding is used [6].

With the advent of turbo codes, several authors investigated
the application of parallel concatenated codes (PCCs) to the
PPM channel. A PCC was applied to the binary PPM channel
[7], and to the M-ary PPM channel [8]. In the latter paper the
PPM demodulator passes soft information to the turbo code but
is not involved in iterative decoding. These approaches allowed
performance improvements over RS coded PPM but failed to
capitalize on iterative demodulation. Iterative demodulation of
PPM with a PCC was treated in [9], applied to the discrete-
time Rayleigh fading channel, where low duty cycles are also
optimum.

In this paper we examine two ECCs designed for the PPM
channel. The first is a serially concatenated code, in the
sense presented in [10], where the constituent codes are a
convolutional code and PPM preceded by a bit-accumulator.



Details of this code are described in [11]. Its combination
of a bit-accumulator and PPM is referred to as accumulate-
PPM (APPM). The second is also a serially concatenated
code, where the constituent codes are a low-density-parity-
check (LDPC) code and PPM. In both cases, PPM or APPM
are iteratively demodulated. Both of these approaches provide
better performance than non-iterative alternatives discussed
above, and better complexity and performance than the itera-
tive alternatives.

The remainder of this paper is organized as follows. In
Section II we describe the channel model. In Section III we
find the Extrinsic Information Transfer (EXIT) functions for
PPM and APPM, which are instrumental in code design. In
Section IV, we describe the first code that uses APPM. In
Section V, we describe the LDPC code. In Section VI, we
discuss the complexity and performance of both codes.

Notation is as follows. Lowercase u,w,y,z denote real-
izations of the corresponding random variables U, W)Y, X.
Boldface u = (uq,ug,...,u,) and U = (Uy,...,U,) denote
vectors. wi;) denotes the vector w with element wy, removed.
Where clear or irrelevant the subscript & of an element u from
vector u may be dropped for simplicity. The notation py (y)
is used to denote the probability density or mass function of
random variable Y evaluated at y. When the random variable
is clear from the context, we simply write p(y) for py (y).

II. CHANNEL MODEL

For the purpose of ECC design, the channel model used
throughout this paper is defined as follows. Binary symbols
c are transmitted over the optical channel and received as
y. The channel p(y|c) is modeled as a binary-input Poisson
channel. In any time slot, either a pulse is transmitted to send
a 1, or no pulse is transmitted to send a 0. Letting n, be the
mean received signal photons per pulsed slot and n; the mean
received noise photons per slot, we have

e~ "nyY

Po(y) = py|c(y]0) g (1)
—(np+ns) Y
e ny + Ng

pi(y) Epyiclyll) = ()7 )

y!
Channel uses are assumed to be conditionally independent,
ie.,

p(yle) = [ p (ylex) 3)
k

and bits are modulated using M-ary PPM. In PPM,
each log, M bits map to the location of a single pulsed slot
in an M-slot frame. Performance of coded systems will be
measured relative to the capacity of a PPM modulated channel.
The duty cycle of M-ary PPM is 1/M. Link budgets for deep-
space optical links show that the optimum duty cycle is less
than 1/32 for the entirety of a typical (in orbit) mission [6],
[12]. As noted earlier, for these duty cycles, we see a negligible
loss in capacity when choosing PPM.

III. PPM AND APPM EXIT CURVES

In this section we characterize PPM and APPM using
extrinsic-information-function-transfer (EXIT) charts. For this,
we consider the following scenario. A block of bits a is
encoded by a code C (either PPM or APPM) to yield the se-
quence of symbols c. The sequence of symbols c is transmitted
over the channel defined by equations (1-3) and received as
y.

The code is decoded via a soft-input-soft-output (SISO)
algorithm, or decoder. A SISO decoder receives, as soft inputs,
noisy versions, or log-likelihoods, of the input and output of
the encoder and produces updated log-likelihoods of the input,
or output, or both. These likelihoods may then be transmitted
to other SISO modules in the receiver where they are treated as
noisy inputs. Derivations of the SISO algorithm have appeared
in various forms in the literature, e.g., [13], [14] and will not
be presented here.

In our case, the SISO decoder of code C receives y, a noisy
version of ¢ over the memoryless communications channel
p(y|c). We also think of it as receiving a sequence w, a noisy
version of a over a memoryless extrinsic channel p(wla).
With the serial concatenation of an outer code with the inner
code C, the extrinsic channel models information coming from
the outer decoder. The sequence w and channel p(w|a) are
artificial constructs introduced to aid in analysis of the decoder,
as is done in [15]. The observations in w are assumed to be
conditionally independent, i.e.,

plwy, wjla, y, Wi, ;1) = p(welar)p(w;lay)

Information from the noisy observations w are received by the
SISO decoder as a priori log-likelihood ratios (LLRs)

P (Ak = O|wk)

P (Ak = 1|wk)

from which the SISO algorithm computes, as a function of

the a priori LLRs and the mapping of a to c, extrinsic log-
likelihoods

I, = log

P (Ar =0y, wp)

le, =log
g P (A =1y, wpy)
The LLRs
P(A; =0y, w)
l, =log——"—-—+"2
R T P

are referred to in the literature as the a posteriori information
and are the basis for bit decisions. If p(w|a) is an output
symmetric channel, meaning that

p(wlA =1) = p(—w|A = 0)

then as shown in [16] the conditional densities of the a priori
LLRs are symmetric, ie., they satisfy

pria (1) =pria (1) € 4)
prja (—1)0) = prja (10) e (5)

Empirical evidence shows that py 4 approaches a Gaussian
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Fig. 1. Output Mutual Information vs Input Mutual Information for the PPM
SISO, np = 0.2, M=64

distribution as the number of iterations grows. This can be
intuitively seen as a central limit theorem result. If the condi-
tional LLRs are Gaussian and the channel is output symmetric,
equations (4) and (5) imply that

BE[L|A=1]=—Var[L|A=1] /2
E[L|A=0] = Var[L|A = 0] /2

allowing a simple, single parameter characterization of the
LLR statistics.

Ten Brink [17], [18] proposed tracking the evolution of
the mutual information between bits and their corresponding
LLRs in order to predict the decoder behavior, which has
proven to be a useful tool in code design. In our example,
an extrinsic information transfer (EXIT) function is a plot of
the mutual information I(A; L) as a function of I(A4; L). For
equiprobable binary A, the mutual information I(A; L.) may
be expanded as

I(A; L) :% Z /pLelA(”a) log,

ac{0,1}

2pr|a(l|a)

PL.a(ll0) + prja(lll)

(6)
which may be evaluated via numerical integration using es-
timates of the densities pr, 4 obtained by simulation. To
estimate pr, |4, We assume pr|4 is Gaussian, and determine
Pr.ja from samples of L. generated by simulation, and
assumed independent and identically distributed. A kernel
density estimator along with trapezoidal numerical integration
is used, treating the densities as continuous.

Figures 1 and 2 show I(A;L.) versus I(A;L) for PPM
and APPM respectively with M = 64, n, = 0.2, and
ns € {1.5,2.0,2.5,3.0}. Assuming a symmetric Gaussian
distribution for L and L., bit error rate contours are also shown
from which the error rate in estimating a can be predicted at
any combination of I(A; L) and I(A;L,.).
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Fig. 2. Output Mutual Information vs Input Mutual Information for the
APPM SISO, ny = 0.2, M=64

We note that APPM, which is constructed by preceding
PPM with a recursive 1/(1 + D) binary accumulator, allows
I(A, L) togoto1las I(A; L) approaches 1, whereas for PPM
I(A, L.) remains below 1 at (A, L) = 1. This comes at the
cost of a slightly lower initial I(A, L.) for APPM compared
to PPM, as can be noted by comparing Fig. 1 and Fig. 2.

If we assume that py,_4(I|1) = pr.a(—1]0) and that py, |4
is Gaussian, then I(A; L) becomes a function of Var[L.|A]
only and (6) reduces to

I(A;Le) =1— Ep 4z [logy (1 + )]
=1-Ep a0 [logy (1+ e %] (7
IV. CONVOLUTIONAL CODE CONCATENATED WITH APPM

When iteratively decoding a serially concatenated system,
the extrinsic information from the inner SISO is fed to the
outer SISO as a priori information. As can be envisioned from
Fig. 1 and Fig. 2, for continuous improvement in the error
rate with iterations, the output mutual information from the
outer SISO has to be greater than the previous input mutual
information to the inner SISO at each iteration. As proposed in
[17], one can view the interaction between the two decoders
by plotting I(A; L) as a function of I(A; L) for the inner
SISO alongside I(A; L) as a function of I(A; L. ) for the outer
SISO. In order to drive the error rate to zero, the curve of the
inner SISO has to lie above the curve of the outer SISO.

The input mutual information for a convolutional code must
go to one in order to drive the output mutual information to
one (or the error rate to zero). Since a PPM SISO will never
reach an output mutual information of one, its EXIT curve
will always be lower at some points than the EXIT curve of
any convolutional code used for the outer code. The serial
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concatenation of a convolutional code with APPM instead of
PPM, remedies this situation.

With the modulation fixed to be APPM, how should one
choose the convolutional code? The optimizing criterion is to
find a convolutional code whose EXIT curve will be lower than
the EXIT curve of the APPM SISO at as low ng as possible,
while providing a concatenated code with sufficiently large
minimum distance. The distance properties of the concatenated
code depend on the interleaver design and block length (the
EXIT charts do not predict distance properties), and are
beyond the scope of this paper. In practice, for block lengths on
the order of kilobits, the constraint length 3, rate 1/2 (5,,7,)
convolutional code was found to give the best results.

The resulting code design is the serial concatenation of
the (5,,7,) convolutional code, followed by an interleaver,
followed by APPM. We refer to this code as SCPPM. An
EXIT analysis for this code predicts a threshold of ns = 1.94
at np = 0.2.

V. LDPC CoODE CONCATENATED WITH PPM

Since an LDPC code may be designed to have an output
mutual information of one for a input mutual information less
than one, it lends itself to concatenation with either PPM or
APPM. However, the APPM SISO requires a larger number
of computations, and a much higher processing latency as will
be discussed in Section VI-A. In order to limit the complexity,
and, since we have seen no performance gain by using APPM
in concatenation with an LDPC code, we choose to design an
LDPC code to be used with PPM.

A. EXIT Analysis for LDPC Coded PPM

To determine the degree distribution of our LDPC code we
follow the approach of [19]. Figure 3 shows a block diagram
of the decoder illustrating the flow of messages (likelihoods)
passed between an LDPC decoder and a PPM SISO and within
the LDPC decoder. It also shows different points to monitor
mutual information for our EXIT analysis. We refer the reader
to [19] for further details on EXIT analysis for LDPC coded
modulation. To facilitate our analysis, we will determine an
EXIT curve for the PPM SISO (which will be denoted by

CPr(X=1)=Pr(X=-1)=
{ noise with variance o2 and Y = X+N. We define the function

DET to match the notation of [19]) combined with the variable
nodes of the LDPC decoder, and another EXIT curve for the
check nodes of the LDPC decoder. Hereinafter, we will denote

{ the first curve by VND and the latter by CND. We will first

determine the EXIT curves for a regular code with variable

{ node degree d, and check node degree d.. We define the
i function J(-) as follows:

Definition 1: Let X be a random variable such that
%, N be zero mean Gaussian

J (%) to be the mutual information I(X;Y). O
With the assumption that the LLR’s exchanged between the
PPM SISO and the variable nodes as well as those exchanged
between the variable nodes and the check nodes are all
Gaussian, then following the analysis and notation proposed
in [19] and referring to Fig. 3 we can write

Iaper=J (\/@J_1 (IA,VND)>

Ig prr is computed from I4 ppr by evaluating (6) nu-
merically, obtaining the densities via simulation, i.e. without
assuming that extrinsic LLR’s of the PPM SISO are Gaussian.
Following [19], Ig v np can then be given as:

Ievnp =J (\/(dv —1)[Jt (IA,VNDH2 +[J! ([E,DET)]Q)

For the check node curve, we use the following accurate
approximation which is exact in the case of an erasure channel
[19]:

Iponp ~1=J (Vde=1-J7 (1= Liewn)) @)

We may express (8) in terms of its inverse function to match
the way it is plotted in Fig. 4:

J1(1—-1
Igcnp=1—-J ( ( E’CND)>

Vde. —1

Figure 4 shows our VND curves and CND curves for various
values of d, and d.. These curves were generated using
M = 64, n, = 0.2 and ny = 1.995. For a regular code
to be converging at any particular ng, its VND curve should
be above its CND curve at this ns. For an irregular code,
the overall VND and CND curves are weighted averages of
the different VND and CND curves depending on the degree
distribution of the variable and check nodes. Fixing ny, for any
degree distribution, the n, at which the overall VND curve
touches the overall CND curve determines the threshold of
the corresponding code. Minimization of this threshold is our
optimization criteria.

B. LDPC Code Construction

An unconstrained optimization of the degree distributions of
variable and check nodes may be unnecessarily complex, and
could yield impractical degree distributions. Moreover, some
heuristic constraints are helpful to reduce the error floor of
the resulting code, which is not strictly predicted via EXIT
curves alone. Using the EXIT curves, we optimized the degree
distribution of our rate 1/2 LDPC code subject to the following
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heuristic constraints:

1) All check nodes have the same degree, to simplify our
analysis.

2) The number of degree two variable nodes should be no
more than 25% of the total number of variable nodes to
avoid a high error floor.

3) The maximum variable node degree should be no more
than 24. Increasing it beyond that increases the com-
plexity with no significant performance gain.

Applying an exhaustive search for the best threshold subject
to the above conditions, and rounding the degree distribution
to rational numbers with a denominator less than 100, the
following degree distribution was found: 21 /88 of the variable
nodes are degree 2, 66/88 are degree 3, 1/88 are degree 24 and
all check nodes are degree 6. Using this degree distribution,
and fixing n;, to 0.2, the overall VND curve is above the overall
CND curve for ng > 2.13, which is the predicted threshold
using this analysis technique.

C. Decoder Scheduling

For the SCPPM decoder, the outer code SISO is run once
each time the APPM SISO is run, in order for each to have
updated inputs. However, with LDPC-PPM, each decoding of
the LDPC variable nodes sends updated messages to both the
check nodes and the PPM SISO, and one has the option of
scheduling these iterations in various manners. If the maxi-
mum allowed number of iterations between the PPM SISO
and the LDPC decoder is small, scheduling does have some
impact on performance. However, with the maximum number
of iterations between the PPM SISO and the LDPC decoder

sufficiently large (= 100), the number of iterations between
the LDPC variable and check nodes each time the LDPC
decoder is run (hereinafter denoted by LDPC iterations per
PPM SISO iteration), has negligible impact on performance.
However, it does have a large impact on decoding complexity.
A detailed analysis of the complexity in the operation region
of practical interest with M=64, shows that the number of both
multiplications and additions are minimized by choosing two
LDPC iterations per PPM SISO iteration.

VI. COMPARISON OF THE TWO CODED MODULATIONS
A. Latency

The decoder of SCPPM consists of two SISO’s: one for the
(5, 7) convolutional code, and one for APPM. For the forward
or backward paths of the BCJR algorithm [13], the codeword
may be partitioned to smaller blocks and the blocks can be
processed in parallel with a negligible loss in performance (up
to some limit). However, within each block of the codeword,
processing a symbol in the forward or backward paths depends
on the results of processing the previous symbol. Therefore,
within each block, the forward and backward paths have to be
completed in a serial fashion, no matter how many parallel
processors there are. This represents a major algorithmic
computational difference between the APPM SISO and PPM
SISO that is used in the proposed LDPC-PPM code. A PPM
SISO can theoretically process all the symbols in parallel
(although the number of processors may be too high for a
practical implementation in today’s technology), because there
aren’t any dependencies between symbols. Furthermore, the
message passing algorithm of an LDPC decoder [20], as used
in LDPC-PPM, lends itself naturally to parallel processing,
as opposed to the SISO required for the (5,7) convolutional
code required for SCPPM. Hence an LDPC-PPM decoder
lends itself more naturally to parallel processing and a smaller
decoding latency.

B. Operations Count

Table I gives the total number of operations per user bit for
the complete SCPPM decoder and LDPC-PPM decoder for
M = 64 and M=1024 at a word error rate of about 10™%,

C. Performance

In this section we present simulation results for the SCPPM
code and LDPC-PPM code described in this paper, as well
as for an Accumulate-Repeat-Accumulate with repetition 4
(AR4A) LDPC code recently proposed for deep space RF
communications [21]. The AR4A code is serially concatenated
with PPM and iteratively decoded in the same manner as the
LDPC-PPM code. All simulations are for the Poisson channel
with n, = 0.2 photons/slot and M = 64. The codeword
length is 8208 bits (i.e. 4104 user bits) for SCPPM, 8184 bits
(i.e. 4092 user bits) for LDPC-PPM, and 8192 bits (i.e. 4096
user bits) for AR4A-PPM. Figure 5 shows the bit error rate
P, of these codes relative to the capacity of the Poisson PPM
channel. At P, ~ 10~° (corresponding roughly to a word
error rate of 10~% for the codes presented), SCPPM is about



TABLE I
TOTAL OPERATIONS COUNT PER USER BIT FOR SCPPM AND LDPC-PPM

SCPPM LDPC-PPM
Multiplications  Additions | Multiplications Additions
Total operations per user bit for M=64 1419 2231 2042 2394
Total operations per user bit for M=1024 8352 22628 8024 19723

1 dB away from capacity, LDPC-PPM is about 1.4 dB away
from capacity, while AR4A-PPM is about 2.2 dB away from
capacity. The gap between SCPPM and LDPC-PPM agrees
with the thresholds predicted for both codes in Sections IV
and V-B.
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VII. CONCLUSION

We have developed a SCPPM code as well as an LDPC-
based code for deep space optical communications. They oper-
ate at 1 dB and 1.4 dB away from capacity respectively. Either
code would make a sensible solution depending on the PPM
order, latency requirements, and the desired implementation
architecture.
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